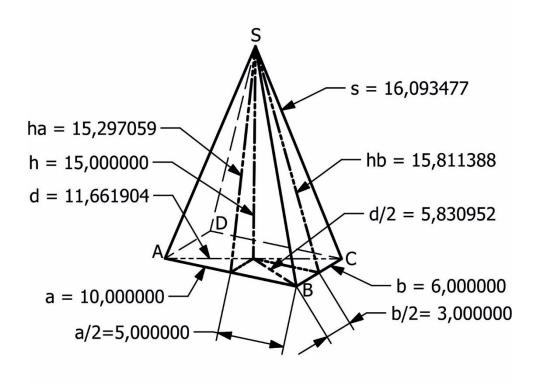
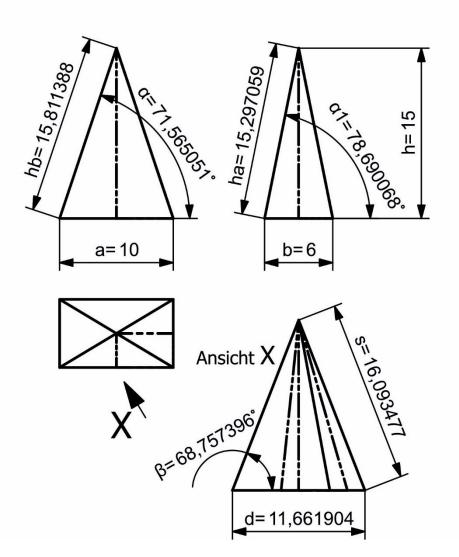
<u>Formeln für Rechteckpyramide – S.1</u>

Nr.	Formel	Gegeben
1	Höhe (Seitenhöhe) $h_a = \sqrt{h^2 + (\frac{b}{2})^2}$	b; h
2	Höhe (Seitenhöhe) $h_a = \sqrt{s^2 - (\frac{a}{2})^2}$	a;s
3	Höhe (Seitenhöhe) $h_a = \frac{M - (b * hb)}{a}$	a;b;hb;M
4	Höhe (Seitenhöhe) $h_a = \frac{O - (a*b) - (b*hb)}{a}$	a;b;hb;O
5	Höhe (Seitenhöhe) $h_b = \sqrt{h^2 + (\frac{a}{2})^2}$	a ; h
6	Höhe (Seitenhöhe) $h_b = \sqrt{s^2 - (\frac{b}{2})^2}$	b;s
7	Höhe (Seitenhöhe) $h_b = \frac{M - (a * ha)}{b}$	a;b;ha;M
8	Höhe (Seitenhöhe) $h_b = \frac{O - (a*b) - (a*ha)}{b}$	a;b;ha;O
9	Höhe (Körperhöhe) h = $\sqrt{h_a^2 - \frac{b^2}{2}}$	b; ha
10	Höhe (Körperhöhe) h = $\sqrt{{h_b}^2 - \frac{a^2}{2}}$	a; hb
11	Höhe (Körperhöhe) h = $\sqrt{s^2 - \frac{(\sqrt{a^2 + b^2})}{2}}$	a;b;s
12	Höhe (Körperhöhe) $h = \frac{V*3}{a*b}$	a;b;V
13	Höhe (Körperhöhe) $h = \sqrt{\left(\frac{M - (b * hb)}{a}\right)^2 - \left(\frac{b}{2}\right)^2}$	a;b;hb;M

<u>Formeln für Rechteckpyramide – S.2</u>


Nr.	Formel	Gegeben
14	Höhe (Körperhöhe) $h = \sqrt{\left(\frac{M - (a * ha)}{b}\right)^2 - \left(\frac{a}{2}\right)^2}$	a;b;ha;M
15	Diagonale d = $\sqrt{a^2 + b^2}$	a ; b
16	Halbe Diagonale $\frac{d}{2} = \frac{(\sqrt{a^2 + b^2})}{2}$	a;b
17	Grundkante a = ($\sqrt{hb^2 - h^2}$) * 2	h; hb
18	Grundkante b = $(\sqrt{ha^2 - h^2}) * 2$	h ; ha
19	Grundkante a = $\sqrt{(s^2 - ha^2)} * 2$	ha;s
20	Grundkante b = $\sqrt{(s^2 - hb^2)} * 2$	hb;s
21	Grundkante a = (O - (b * hb)) / (b + ha)	b; ha; hb; O
22	Grundkante b = (O - (a * ha)) / (a + hb)	a; ha; hb; O
23	Grundkante a = $\sqrt{d^2 - b^2}$	b;d
24	Grundkante b = $\sqrt{d^2 - a^2}$	a ; d
25	Grundkante a = $\frac{G}{b}$	b;G
26	Grundkante b = $\frac{G}{a}$	a ; G
27	Seitenkante s = $\sqrt{h^2 + (\frac{d}{2})^2}$	d ; h
28	Seitenkante s = $\sqrt{h^2 + (\frac{(\sqrt{a^2 + b^2})}{2})^2}$	a;b;h


<u>Formeln für Rechteckpyramide – S.3</u>

Nr.	Formel	Gegeben
29	Seitenkante s = $\sqrt{h_a^2 + (\frac{a}{2})^2}$	a ; ha
30	Seitenkante $s = \sqrt{h_b^2 + (\frac{b}{2})^2}$	b; hb
31	Oberfläche O = (a * b) + (a * ha) + (b * hb)	a;b;ha;hb
32	Mantelfläche M = (a * ha) + (b * hb)	a;b;ha;hb
33	Grundfläche G = a * b	a;b
34	Umfang U = (a + b) * 2	a;b
35	Volumen $V = \frac{1}{3} * a * b * h$	a;b;h
36	Seitenfläche (gleichschenkliges Dreieck): $A_{ha} = \frac{1}{2} * a * h_a$	a ; ha
37	Seitenfläche (gleichschenkliges Dreieck): $A_{hb} = \frac{1}{2} * a * h_b$	a; hb
38	Neigung der Seitenfläche: α = arctan (h / $(\frac{a}{2})$)	a;h
39	Neigung der Seitenfläche: $\alpha 1 = \arctan(h/(\frac{b}{2}))$	b;h
40	Neigung der Seitenkante: β = arctan (h / $(\frac{d}{2})$)	d ; h
41	Grundfläche G = O - M	M ; O

Formeln für Rechteckpyramide – S.4

Beispiel einer Rechteckpyramide

